Thermally induced atomic reconstruction into fully commensurate structures of transition metal dichalcogenide layers (2024)

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS Google Scholar

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    CAS Google Scholar

  • Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).

    CAS Google Scholar

  • Yu, H., Liu, G.-B. & Yao, W. Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers. 2D Mater. 5, 035021 (2018).

    Google Scholar

  • Bai, Y. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020).

  • Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

  • Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

  • Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

  • Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

  • Carr, S. et al. Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B 95, 075420 (2017).

    Google Scholar

  • Liao, M. et al. Precise control of the interlayer twist angle in large scale MoS2 hom*ostructures. Nat. Commun. 11, 2153 (2020).

    CAS Google Scholar

  • Yuan, L. et al. Twist-angle-dependent interlayer exciton diffusion in WS2-WSe2 heterobilayers. Nat. Mater. 19, 617–623 (2020).

    CAS Google Scholar

  • Liao, M. et al. Twist angle-dependent conductivities across MoS2/graphene heterojunctions. Nat. Commun. 9, 4068 (2018).

    Google Scholar

  • Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    CAS Google Scholar

  • Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020).

    CAS Google Scholar

  • Zhao, S. et al. Excitons in mesoscopically reconstructed moiré heterostructures. Nat. Nanotechnol. 18, 572–579 (2023).

  • Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    CAS Google Scholar

  • Holler, J. et al. Low-frequency Raman scattering in WSe2−MoSe2 heterobilayers: evidence for atomic reconstruction. Appl. Phys. Lett. 117, 013104 (2020).

    Google Scholar

  • Rosenberger, M. R. et al. Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano 14, 4550–4558 (2020).

  • Quan, J. et al. Phonon renormalization in reconstructed MoS2 moiré superlattices. Nat. Mater. 20, 1100–1105 (2021).

  • Zhu, S. & Johnson, H. T. Moiré-templated strain patterning in transition-metal dichalcogenides and application in twisted bilayer MoS2. Nanoscale 10, 20689–20701 (2018).

  • Vasu, K. S. et al. Van der Waals pressure and its effect on trapped interlayer molecules. Nat. Commun. 7, 12168 (2016).

    CAS Google Scholar

  • Han, X. et al. Effects of hexagonal boron nitride encapsulation on the electronic structure of few-layer MoS2. J. Phys. Chem. C Nanometer Interfaces 123, 14797–14802 (2019).

    CAS Google Scholar

  • Ryu, H. et al. Anomalous dimensionality-driven phase transition of MoTe2 in van der Waals heterostructure. Adv. Funct. Mater. 31, 2107376 (2021).

    CAS Google Scholar

  • Li, J., Jia, L., Zheng, X., Peng, C. & Fu, X. Structural and elastic properties of WSe2: first-principles calculations. J. Phys. Conf. Ser. 1634, 012145 (2020).

    CAS Google Scholar

  • Zhu, S., Pochet, P. & Johnson, H. T. Controlling rotation of two-dimensional material flakes. ACS Nano 13, 6925–6931 (2019).

    CAS Google Scholar

  • Chen, J. et al. In situ high temperature atomic level dynamics of large inversion domain formations in monolayer MoS2. Nanoscale 11, 1901–1913 (2019).

    CAS Google Scholar

  • Liu, Z. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 5, 5246 (2014).

    Google Scholar

  • Zheng, W. et al. Controlled growth of six-point stars MoS2 by chemical vapor deposition and its shape evolution mechanism. Nanotechnology 28, 395601 (2017).

    Google Scholar

  • van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013).

    Google Scholar

  • Zhao, X. et al. Healing of planar defects in 2D materials via grain boundary sliding. Adv. Mater. 31, e1900237 (2019).

    Google Scholar

  • Singh, Y., Back, S. & Jung, Y. Activating transition metal dichalcogenides by substitutional nitrogen-doping for potential ORR electrocatalysts. ChemElectroChem 5, 4029–4035 (2018).

    CAS Google Scholar

  • Nayak, P. K. et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano 11, 4041–4050 (2017).

    CAS Google Scholar

  • Paradisanos, I. et al. Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition. Nat. Commun. 11, 2391 (2020).

    CAS Google Scholar

  • Yang, D. et al. Spontaneous-polarization-induced photovoltaic effect in rhombohedrally stacked MoS2. Nat. Photonics 16, 469–474 (2022).

    CAS Google Scholar

  • Dadgar, A. M. et al. Strain engineering and Raman spectroscopy of monolayer transition metal dichalcogenides. Chem. Mater. 30, 5148–5155 (2018).

    CAS Google Scholar

  • Horzum, S. et al. Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2. Phys. Rev. B 87, 125415 (2013).

    Google Scholar

  • Tang, Y. et al. Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect. Nat. Nanotechnol. 16, 52–57 (2021).

  • Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    CAS Google Scholar

  • Zhang, L. et al. Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Phys. Rev. B 100, 041402 (2019).

    CAS Google Scholar

  • Wang, T. et al. Giant Valley-Zeeman splitting from spin-singlet and spin-triplet interlayer excitons in WSe2/MoSe2 heterostructure. Nano Lett. 20, 694–700 (2020).

    CAS Google Scholar

  • Li, Z. et al. Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS Nano 15, 1539–1547 (2021).

    CAS Google Scholar

  • Schubert, E. F., Göbel, E. O., Horikoshi, Y., Ploog, K. & Queisser, H. J. Alloy broadening in photoluminescence spectra ofAlxGa1−xAs. Phys. Rev. B 30, 813–820 (1984).

  • Cadiz, F. et al. Excitonic lidth approaching the hom*ogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021016 (2017).

    Google Scholar

  • Merritt, T. R. et al. Photoluminescence lineshape and dynamics of localized excitonic transitions in InAsP epitaxial layers. J. Appl. Phys. 115, 193503 (2014).

    Google Scholar

  • Hsu, W. T. et al. Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers. Nat. Commun. 9, 1356 (2018).

    Google Scholar

  • Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    CAS Google Scholar

  • Hanbicki, A. T. et al. Double indirect interlayer exciton in a MoSe2/WSe2 van der Waals heterostructure. ACS Nano 12, 4719–4726 (2018).

    CAS Google Scholar

  • Alexeev, E. M. et al. Emergence of highly linearly polarized interlayer exciton emission in MoSe2/WSe2 heterobilayers with transfer-niduced layer corrugation. ACS Nano 14, 11110–11119 (2020).

    CAS Google Scholar

  • Wu, B. et al. Observation of double indirect interlayer exciton in MoSe2/WSe2 heterostructure. Nano Res. 15, 2661–2666 (2021).

    Google Scholar

  • Mahdikhanysarvejahany, F. et al. Temperature dependent moiré trapping of interlayer excitons in MoSe2-WSe2 heterostructures. NPJ 2D Mater. Appl. 5, 67 (2021).

    CAS Google Scholar

  • Ciarrocchi, A. et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photonics 13, 131–136 (2019).

    CAS Google Scholar

  • Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    CAS Google Scholar

  • Deb, S. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465–469 (2022).

    CAS Google Scholar

  • Rogée, L. et al. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science 376, 973–978 (2022).

  • Pizzocchero, F. et al. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 7, 11894 (2016).

    CAS Google Scholar

  • Rokni, H. & Lu, W. Direct measurements of interfacial adhesion in 2D materials and van der Waals heterostructures in ambient air. Nat. Commun. 11, 5607 (2020).

    CAS Google Scholar

  • Son, J. et al. Atomically precise graphene etch stops for three dimensional integrated systems from two dimensional material heterostructures. Nat. Commun. 9, 3988 (2018).

    Google Scholar

  • Thermally induced atomic reconstruction into fully commensurate structures of transition metal dichalcogenide layers (2024)
    Top Articles
    Latest Posts
    Article information

    Author: Lakeisha Bayer VM

    Last Updated:

    Views: 5581

    Rating: 4.9 / 5 (49 voted)

    Reviews: 80% of readers found this page helpful

    Author information

    Name: Lakeisha Bayer VM

    Birthday: 1997-10-17

    Address: Suite 835 34136 Adrian Mountains, Floydton, UT 81036

    Phone: +3571527672278

    Job: Manufacturing Agent

    Hobby: Skimboarding, Photography, Roller skating, Knife making, Paintball, Embroidery, Gunsmithing

    Introduction: My name is Lakeisha Bayer VM, I am a brainy, kind, enchanting, healthy, lovely, clean, witty person who loves writing and wants to share my knowledge and understanding with you.